

Gleittisch

IMV Gleittische Gesamtkatalog

IMV CORPORATION

IMV EUROPE LIMITED

1 Dunsbridge Business Park, Shepreth, Royston, Herts, SG8 6RA, United Kingdom tel. +44 1763 269978

IMV EUROPE LIMITED German Sales Office

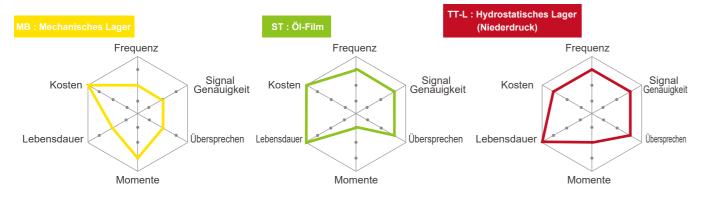
Landsberger Str. 406, D-81241 Munich, Germany tel. +49 89 21545 9901

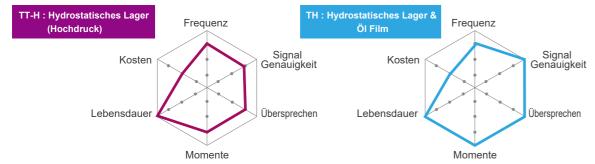
IMV France

1 rue George Stephenson 78180 Montigny Le Bretonneux, France tel. +33 (0)130124792

https://www.imv-tec.eu/de/

 $^\star\text{Die}$ technischen Daten und das Design können sich ohne vorherige Ankündigung ändern.

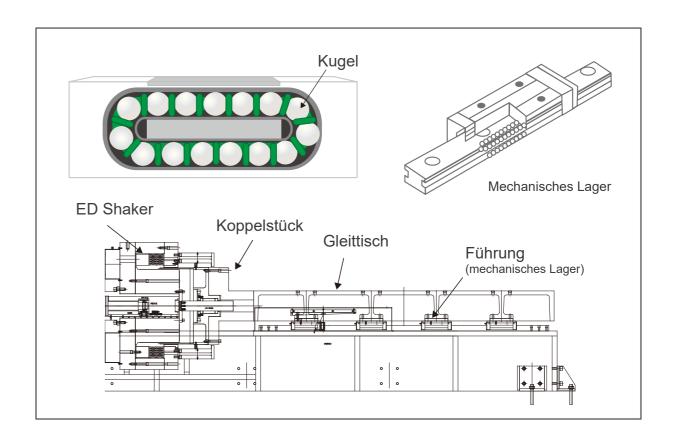



August 2021 Cat No. 2108@TBV-Eng.

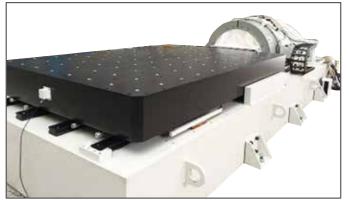
IMV CORPORATION

Einführung

Der Gleittisch dient der horizontalen Prüfung großer oder schwerer Prüfproben. Der Gleittisch arbeitet nahezu reibungsfrei in horizontaler Richtung, sichert hohe Genauigkeit der Signale und ist für die Aufnahme hoher Lasten geeignet. Alle Produkte, von Tischen mit mechanischen Lagern über Tische mit hydrostatischen oder hydraulischen Lagern, werden von IMV entworfen und gebaut und geben IMV die volle Kontrolle über diese wichtige Komponente des Schwingprüfsystems.


Nick-Moment					[N•m]
	MB	ST	TT-L	TT-H	TH
200 × 200	50	-	-	-	-
300 × 300	200	-	-	-	-
400 × 400	300	-	-	-	-
500 × 500	-	200	1,100	4,000	-
550 × 550	-	-	1,100	4,000	3,000
630 × 630	1	400	1,100	4,000	-
750 × 750	-	-	2,200	7,700	33,000
800 × 800	-	800	2,200	7,700	-
950 × 950	-	-	2,200	7,700	42,500
1000 × 1000	-	1,300	2,200	7,700	-
1150 × 1150	1	-	4,600	16,000	42,500
1200 × 1200	1	-	4,600	16,000	-
1450 × 1450	-	-	6,500	22,000	99,000
1500 × 1500		-	6,500	22,000	-
1800 × 1800	-	-	10,000	48,000	-
2000 × 2000	-	-	10,000	48,000	-

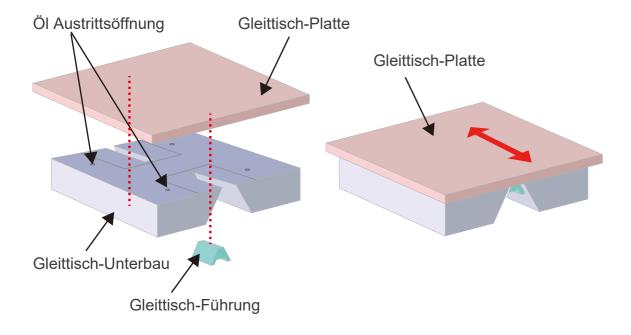
Maximale Last					[kg]
	MB	ST	TT-L	TT-H	TH
200 × 200	30	-	-	-	-
300 × 300	30	-	-	-	-
400 × 400	50	-	-	-	-
500 × 500	1	200	200	800	-
550 × 550	1	-	200	800	1,500
630 × 630	-	300	300	1,200	-
750 × 750	-	-	400	1,600	9,000
800 × 800	-	400	400	1,600	-
950 × 950	-	-	500	2,000	9,000
1000 × 1000	-	500	500	2,000	-
1150 × 1150	-	-	-	2,000	9,000
1200 × 1200	-	-	500	2,000	-
1450 × 1450	-	-	-	2,000	9,000
1500 × 1500	-	-	500	2,000	-
1800 × 1800	-	-	800	3,000	_
2000 × 2000	-	-	800	3,000	-


MB: Mechanisches Lager

Als mechanische Lager werden Linearlager verwendet. Mit hoher Steifigkeit, Belastbarkeit und großer Auslenkung ermöglichen diese Lager eine hohe Leistung des Tisches.

Eine weitere überzeugende Eigenschaft von Linearlagern ist die einfache Handhabung: Sie sind leicht und benötigen keine Hydraulik.

Sehen Sie unseren Film auf YouTube

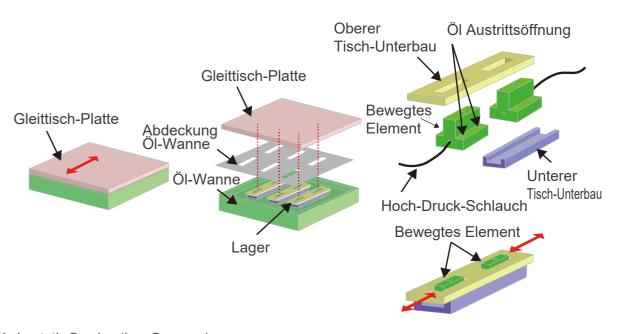


Sehen Sie unseren Film auf YouTube

ST: Gleittisch mit Öl-Film

Die Gleittischplatte wird auf einem Öl-Film gelagert. Auf der Unterseite der Platte wird kontinuierlich ein Öl-Film erzeugt, der ein Bewegen mit niedriger Reibung ermöglicht. Die Ölpumpe ist im Gleittischgestell untergebracht. Da die bewegte Masse klein ist, gehört dieser Gleittischtyp zu der am häufigsten verkauften Variante.

Тур		TBH-500			TBH-630			TBH-800			TBH-1000		
Abm. (mm)					630 × 630								
Nick-Moment (kN·m)		0.2			0.4		0.8						
Last maximum (kg)		200			300			400			500		
Schwingerreger	Gew* (kg)	Frequ. maximum (Hz)	Plattenstärke (mm)	Gew* (kg)	Frequ. maximum (Hz)	Plattenstärke (mm)	Gew* (kg)	Frequ. maximum (Hz)	Plattenstärke (mm)	Gew* (kg)	Frequ. maximum (Hz)	Plattenstärke (mm)	
i210		0500					_	_	_	_	_	_	
i220	33	2500	30	45		30	65		30	100		30	
K030		2000			2000		0.5	2000	30	100	1250	30	
K060	60	2000	50	80		50	115		50	170	1230	50	
K080	_	_	_	00		30	115		50	170		50	


^{*}die bewegte Masse bezieht sich eine Platte aus Aluminium-Legierung. Es ist möglich, Magnesium zu verwenden. Kontaktieren Sie uns für weitere Informationen.

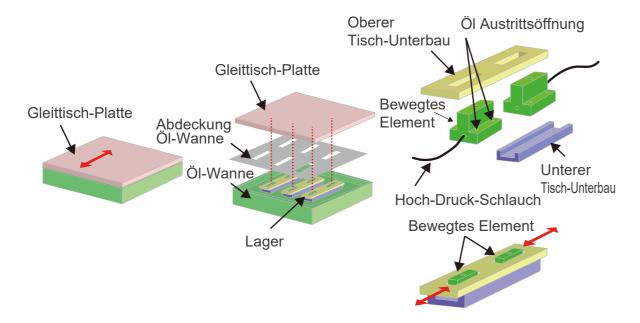
TT-L: Hydrostatisches Lager (Niederdruck)

Mehrere hydrostatische Lager werden auf dem sehr steifen Sockel angeordnet, um die Gleittischplatte zu lagern. Speziell dafür entwickelte hydrostatische Lager ermöglichen eine hohe Last und erlauben hohe Momente. Die Lager sind in wärmegedämmten Wannen montiert und der Tisch kann als ganze Einheit direkt in einer Temperaturkammer verwendet werden. Somit sind keine Thermobarrieren und kein Faltenbalg zur Anbindung an den Kammerboden erforderlich.

TT-L: Kleine Ölpumpe im Gleittisch-Gestell (Standard)

TT-L: Hydrostatic Bearing (Low Pressure)

Тур	TBH	H-500-A	\-TT	TBH	H-630-A	\-TT	TBI	H-800-A	-TT	TBH	-1000-	\-TT	ТВН	-1200-	4-TT	TBH	-1500-/	4-TT	ТВН	l-1800- <i>i</i>	A-TT	TBH	-2000- <i>A</i>	A-TT
Abm. (mm)					30 × 63																			00
Nick-Moment (kN·m)		1.1			1.1			2.2			2.2			4.6			6.5			10			10	
Last maximum (kg)		700			1000			1000			1500			2000			2000			2500			2500	
Schwingerreger	Gew*	Frequ.	Plattenstärke (mm)	Gew*	Frequ.	Plattenstärke (mm)	Gew*	Frequ. maximum (Hz)	Plattenstärke (mm)	Gew* (kg)	Frequ.		Gew*	Frequ.		Gew*	Frequ.	Plattenstärke (mm)	Gew*	Frequ.	Plattenstärke (mm)	Gew*	Frequ.	Plattenstärke (mm)
i210	40	2000		53	2000		75	1600		105														
i220	43	2000	30	55	2000	30	78	1000	30	108		30												
J230	50		30	63		30	85		30	118	1000	30	280	900	50	450	800	50	650	600	50	800	500	50
J240		1600			1600			1250																
J250 J260	70		40	85		40	115		40	155		40												


^{*}die bewegte Masse bezieht sich eine Platte aus Aluminium-Legierung. Es ist möglich, Magnesium zu verwenden. Kontaktieren Sie uns für weitere Informationen.

TT-H: Hydrostatisches Lager (Hochdruck)

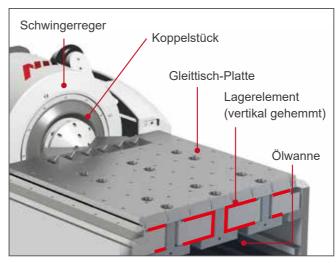
Mehrere hydrostatische Lager werden auf dem sehr steifen Sockel angeordnet, um die Gleittischplatte zu lagern. Speziell dafür entwickelte hydrostatische Lager ermöglichen eine hohe Last und erlauben hohe Momente. Die Lager sind in wärmegedämmten Wannen montiert und der Tisch kann als ganze Einheit direkt in einer Temperaturkammer verwendet werden. Somit sind keine Thermobarriere und kein Faltenbalg zur Anbindung an den Kammerboden erforderlich.

TT-H: Verbesserte Tisch-Performance – höhere Last und größere Momente. Die Hochdruck-Ölpumpe (bis zu 14 MPA) wird außerhalb des Gleittisches platziert.

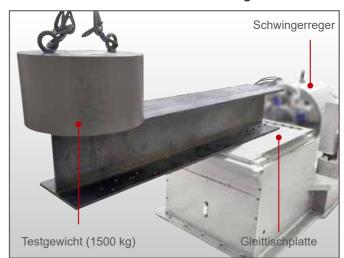
TT-H: Hydrostatic Bearing (High Pressure)

Тур	HB	-500-A	-TT	HB	8-630-A	-TT	HB	-800-A-	-TT	HB-	1000-A	-TT	HB-	-1200-A	-TT	HB.	-1500-A	-TT	HB-	-1800-A	\-TT	HB-	·2000-A	k-TT
Abm. (mm)		00 × 50			30 × 63									00 × 12										
Nick-Moment (kN·m)		4			4			7.7			7.7			16			22			48			48	
Last maximum (kg)		800			1200			1600			2000			2000			2000			3000			3000	
Schwingerreger	Gew*	Frequ.		Gew*	Frequ.		Gew*	Frequ. maximum (Hz)		Gew*	Frequ.		Gew*	Frequ.	Plattenstärke (mm)	Gew*	Frequ.	Plattenstärke (mm)	Gew*	Frequ.	Plattenstärke (mm)	Gew* (kg)	Frequ.	
i210	60	2000		70	2000		115	2000		165	1250													
i220	63	2000		83	2000		118	2000		168	1230													
J230	68			88			125			175														
J240	70	1600		90	1600		130	1250		178	1000													
J250	83	1000		100	1000		143	1230		188	1000													
J260	0.5		50	100		50	143		50	100		50	280	900	50	450	800	50	650	600	50	800	500	50
K030	68			88			123			173														
K060	93	2000		108	2000		145	2000		193	1250													
K080	78	2000		95	2000		133	2000		180	1230													
K125A	103			118			155			205														
K125LS	113	1600		128	1600		170	1250		220	1000													

*die bewegte Masse bezieht sich eine Platte aus Aluminium-Legierung. Es ist möglich, Magnesium zu verwenden. Kontaktieren Sie uns für weitere Informationen.



TH: Hydrostatisches Lager und Öl-Film

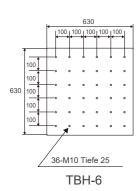

Das neu entwickelte hydrostatische und hydraulische Lager hat die folgenden Eigenschaften :

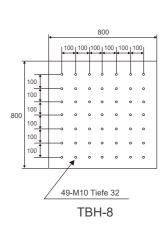
- Hohe Momente können aufgenommen werden
- Geringe Querbeschleunigung
- Niedrige Verzerrung
- · Separate Hydraulik ist nicht erforderlich
- · Geringer Platzbedarf für Installation

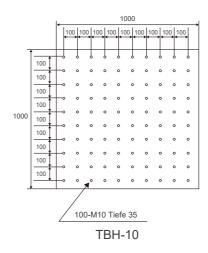
■ Aufbau des Lagers

■ Versuch zum Nachweis der zulässigen Momente

Тур		550TH	TBH-	750TH			TBH-1		TBH-1	
Abm. (mm)										
Plattenstärke (mm)	į	50	5	50	5	50	5	0	5	50
Nick-Moment (kN·m)		6	6	66	8	15	8	5	19	98
Last maximum (kg)	15	500	90	000	90	000	90	00	90	100
Schwingerreger	Gew* (kg)	Frequ. maximum (Hz)								
A11 A22	85	2000	159		215		298		452	
A30		2000		0000	2.0	4050	200	000	.02	500
A45				2000		1250		800		500
A65	_	_	180		236		318		473	
A74										

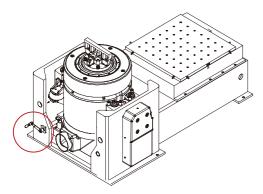

^{*}die bewegte Masse bezieht sich eine Platte aus Aluminium-Legierung. Es ist möglich, Magnesium zu verwenden. Kontaktieren Sie uns für weitere Informationen


Sehen Sie unseren Film auf YouTube



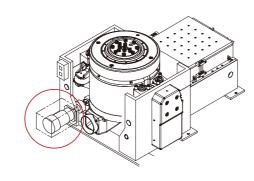
Ausstattung

Gleittisch Lochraster


*Kontaktieren Sie uns für weitere Raster

Optionen für Gleittisch

Schwenkantrieb


Abluft-Anschluss

Drehen des Schwingerregers mittels Handkurbel.

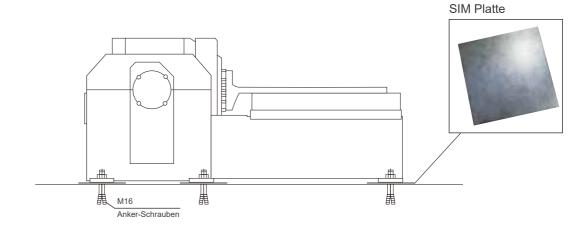
Schwenken mit Motorantrieb

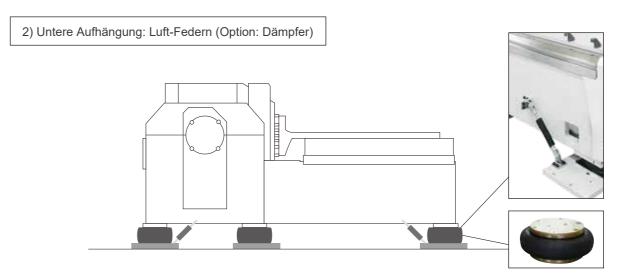

Elektrischer Schwenkantrieb des Schwingerregers. Dieser Antrieb wird optional bei Systemen mit Schwenkantrieb montiert.

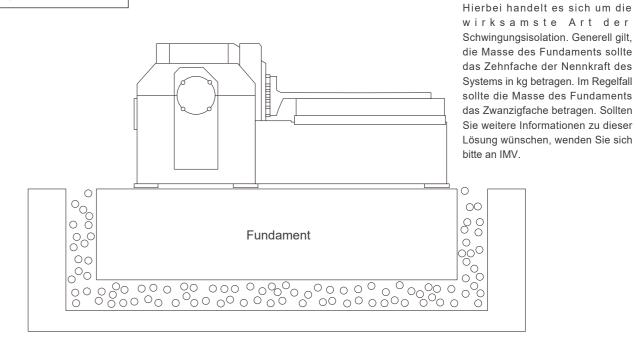
Ein neu entwickelter Anschluss gehört zur Standardausstattung für Shaker der A-Serie. So wird der Aufwand für den Wechsel der Anregungsrichtung reduziert.

Prüfung in horizontaler Richtung

Umbauen auf vertikale Richtung

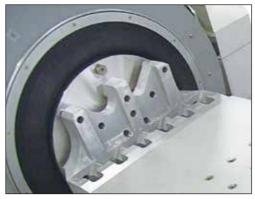



Nach dem Umbau für vertikale Prüfung


Schwingungsisolierung

1) Standard: Anker-Schrauben (6 Positionen) + SIM Platte

3) Fundamentisolation


Eigenschaften

Dauerhafte Ausrichtung

Wesentliche Elemente, wie der Schwingerreger, Lager und große oder kleine Gleittisch-Platten, werden alle in einem Gestell montiert. Alle Einstellarbeiten werden bereits bei IMV durchgeführt, daher ist eine Ausrichtung von Schwingerreger und Gleittisch durch den Anwender nicht erforderlich. Beispielsweise sind Arbeiten mit einer Fühlerlehre bei der Einrichtung des Tisches nach dem Schwenken nicht notwendig. Für die Positionierung des Koppelstücks werden Passstifte verwendet, so dass ein Ausrichten zum Gleittisch nicht erforderlich ist.

■ Sehr steifes Koppelstück

Das Koppelstück aus einer Aluminiumlegierung ist aus einem Stück gefertigt. Gussteile ermöglichen eine steifere Ausführung als geschweißte und die Form kann flexibler gestaltet werden, für maximale Steifigkeit und Zuverlässigkeit. Geschweißte Strukturen werden u.a. mit Brüchen der Naht assoziiert, hochwertige Gussmaterialien können solche Probleme lösen. Die Ebene zur Verschraubung des Koppelstücks ist genau in Anregungsrichtung ausgerichtet und bietet so eine ideale Verbindungsmöglichkeit.

*Bitte kontaktieren Sie uns für weitere Verbindungsmöglichkeiten (z.B. Verbindung mittels geneigter Verschraubungspunkte).

Schwingungsisolierung

Eine einfache und effektive Möglichkeit Schwingungen zu isolieren, bietet die elastische Aufhängung des Schwingerregers. Linearlager und Luftfeder haben dieselbe Bewegungsrichtung wie die Anregungsrichtung des Shakers. So werden die erzeugten Schwingungen für vertikale und horizontale Richtung unterdrückt. Das Luftvolumen der Luftfedern kann mit Ventilen leicht eingestellt werden, beispielsweise für das Schwenken des Shakers. Mit Feststellplatten kann der Schwingerreger im Gestell fixiert werden. Damit sind Prüfungen mit großen Auslenkungen möglich. Unter dem Gleittisch-Gestell können Luftfedern installiert werden, um die durch Nickmomente des Prüflings auf dem Gleittisch entstandenen Schwingungen vom Aufstellort zu isolieren.

Sehen Sie unseren Film auf YouTube

Öltank mit ausgezeichneter Abdichtung

*Nur für Ausführung TT-L/TT-H

Die Abdichtung wird für die Tische mit hydrostatischen Lagern verwendet. Zwischen dem Lager und der Gleittisch-Platte befindet sich eine bewegliche Abdeckung, so dass kein Öl austreten und keine Partikel von außen eindringen können. Der Anwender kommt daher auch dann nicht in Kontakt mit Öl, wenn trennbare Gleittisch-Platten verwendet werden.

■ Trennbare Gleittisch-Platten

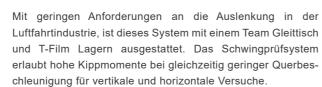
*Nur für Ausführung TT-L/TT-H

Für die Anwendungen können zwei unterschiedliche Größen ausgewählt werden. Eine große Gleittisch-Platte wird für große Prüflinge verwendet. Wenn große Beschleunigungen erforderlich sind, wird die kleine Gleittisch-Platte ausgewählt. Beim Wechseln ist ein demontieren des ganzen Tisches nicht erforderlich. Die kleine Platte wird einfach fest mit der große Platte verbunden.

Hakenschraube

Mittels Hakenschrauben und Spannbändern können Prüflinge auf dem Gleittisch fixiert werden. Bitte kontaktieren Sie uns zum Abstimmen der Positionen der Hakenschrauben.

Fallstudien


Sehen Sie unseren Film auf YouTube

Das erste Schwingprüfsystem, basierend auf Hybrid-Technologie, mit der tief- und hochfrequente Anteile eines Signals unter Verwendung eines Servoantriebs und eines elektrodynamischen Schwingerregers gleichzeitig und genau wiedergegeben werden können.

Schwingprüfsysteme zur Erdbebensicherheit

Großes Schwingprüfsystem für hohe Frequenzen (bis 5000 Hz)

Versuche mit hohen Frequenzen und großen Prüflingen. Der Gleittisch kann entsprechend der Prüflingsgröße ausgetauscht werden, jeder Tisch kann für hohe Frequenzen verwendet werden.

Große Auslenkung und hydrostatische & hydraulische Lager, Hochleistungs-Typ

Mit dem neu entwickelten hydrostatischen und hydraulischen Lager, erreicht dieser Tisch mit den Abmessungen 1800 mm x 1800 mm große Auslenkungen.

Notizen

Alternative Gleittische

■ Details des VST

Spezifikation: VST (Vakuum-Gleittisch)

Abmessunç	gen	600 × 600	750 × 750	900 × 900	1050 × 1050	1200 × 1200	1500 × 1500
Gewicht (kg)	Magnesium	35	50	67	88	111	167
	Nicken	7.7	15	25.9	41.2	61.4	120
7 [//	Rollen	7.7	15	25.9	41.2	61.4	120
Zul. Exz.moment (kNm)	Gieren Dauerhaft	2.8	3.7	4.7	5.6	6.5	8.4
	Gieren Maximal	23.4	31.2	39	46.8	54.6	70.2
Auslenkung Maximum (mm)		160	160	160	160	160	160
Last Maximum (kg)		640	1000	1450	1950	2550	4000
Frequenz Maximum (Hz)		2000	2000	2000	2000	2000	2000
Resonanzfrequenz (Hz)		1250	1050	950	830	730	600
Standard Aufspannraster	100 mm Raster	36	64	81	121	144	225
Gewicht Koppelstück (kg) *	Aluminium	15	15	15	15	15	15

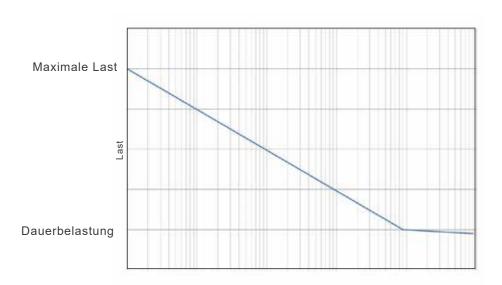
*TBC, Abhängig von Armatur

Alternative Gleittische

Rail Tisch (Rail Table)

Die Hauptinnovation besteht in der Verwendung von Kugelumlaufführungen und einer besonderen Dämpfungstechnik bei dem die Gleittisch-Platte aus mehreren Lagen aufgebaut wird. Das innovative System zeichnet sich durch hohe Zuverlässigkeit und hervorragende Leistung aus und basiert auf langjähriger Felderfahrung.

Merkmale


- Einfach in der Anwendung
- Kein Öl
- Keine elektrische Versorgung
 Sehr gutes dynamisches Verhalten
- Keine Druckluft
- Große Auslenkung
- Robust und langlebig
- Einfache Reparatur und Wartung
- Oxidationsbeständig

■ Haltbarkeit der Lager

Das hohe technische Niveau des Rail Tisches führt zu einer Verlängerung der Arbeitszeit zwischen jeder Wartung. Vor der Versuchsdurchführung kann der Anwender einfach die Tischbelastung berechnen und durch Vergleich der "dauerhaft" und "maximalen" Lastwerte den Verschleiß bewerten, den der Test für den Tisch verursacht. Damit lassen sich die Auswirkungen auf die Wartung abschätzen.

Wichtig: Die Wartung ist sehr einfach durchzuführen, es werden lediglich die Lager ausgewechselt.

Spezifikation: RT (Rail Table)

Abmessunç	gen	450 × 450	600 × 600	750 × 750	900 × 900	1050 × 1050
Gewicht (kg)	Aluminium	30	50	68	96	125
Gewicht (kg)	Magnesium	23	40	53	75	98
	Nicken Dauerhaft	1.7	5.7	7.4	16.2	19.3
	Nicken Maximal	22.3	71.6	93	203.4	241.4
Zul Exz moment	Rollen Dauerhaft	1.3	4.7	6.5	14.6	17.6
(kNm)	Rollen Maximal	17.1	59.9	81.3	182.5	220.6
` '	Gieren Dauerhaft	1.7	5.7	7.4	16.2	19.3
	Gieren Maximal	22.3	71.6	93	203.4	241.4
Auslenkung Maximum (mm)		160	160	160	160	160
Last Maximum (kg)		414	620	931	1241	1654
Frequenz Maximum (Hz)		2000	2000	2000	2000	2000
Resonanzfrequenz (Hz)		1400	1250	1050	950	830
Standard Aufspannraster	100 mm Raster	25	36	64	81	121
Gewicht Koppelstück (kg) *	Aluminium	15	15	15	15	15

*TBC, Abhängig von Armatu